Previous Webinars 

All previous webinars are available to Society for Cryobiology members through the members' area of the website. To access all members' only content please sign into your account

September 12, 2022
Enhancing Cryopreservation via Control of Ice Formation

6:30AM US/Pacific | 9:30AM US/Eastern | 2:30 PM United Kingdom | 3:30PM Central Europe | 5:30 PM Gulf Standard
 | 9:30 PM China Standard 

Co-Chair: Dr. Zhiquan "Andy" Shu - Assistant Professor, University of Washington - Tacoma, USA
Co-Chair: Dr. Miao Zhang - School of Biological Science and Medical Engineering, Southeast University, China

Dr. Xiaoming "Shawn" He Professor, University of Maryland, United States

We developed a novel sand-based approach inspired by nature to enhance cell/tissue cryopreservation. This is demonstrated by cryopreserving human induced pluripotent stem cells (hiPSCs) as 3D microspheres with no serum, minimized cryoprotectant, and high cell survival. Furthermore, the cryopreserved hiPSCs retain high pluripotency and functions judged by pluripotency marker expression, cell cycle, and capability of differentiation into all the three different germ layers. This novel sand-mediated serum-free low-cryoprotectant cryopreservation method may greatly facilitate the convenient and ready availability of high-quality iPSCs and possibly many other types of cells/tissues for the emerging cell-based medicine.

Xiaoming He is a Professor of Bioengineering at the University of Maryland, College Park. His research is focused on developing multiscale biomaterials/devices to engineer, bank, and deliver today’s medicine for cancer theranostics and tissue regeneration. He has published >140 articles in high-ranking journals including Nature NanotechnologyNature Biomedical Engineering, and Nature Communications. He is a fellow of the American Society of Mechanical Engineers (ASME) and the American Institute of Medical and Biological Engineering (AIMBE).

Learn More 

Dr. Haishui Huang - Professor, Xi'an Jiaotong University | Associate Director, Bioinspired Engineering and Biomechanics Centre, China

Ice formation is a major damaging factor in the low temperature preservation of multiscale mammalian biospecimens, and its precise manipulation is a critical challenge in the development of advanced biopreservation technologies. This seminar will discuss three new preservation methods, “pre-dehydration + ice seeding”, “local vitrification”, and “deep supercooling”, through controlling the nucleation, proliferation, and distribution of ice crystals during low-temptation storage.
Dr. Haishui Huang is a professor at Xi’an Jiaotong University and an associate director at Bioinspired Engineering and Biomechanics Centre. Dr. Huang graduated from the Ohio State University and conducted his postdoc research fellowship at the Harvard Medical School. His research interests lie in the interface between thermodynamics and biomedical engineering, including biopreservation, thermal therapy, and tissue engineering. These research activities were published on a series of high-profile journals, such as Nature Biomedical Engineering and Nature Communications. Dr. Huang’s research was funded by “Young Talent Support Program” of Xi’an Jiaotong University and National Science Foundation of China.

 July 14, 2022

8:00AM US/Pacific | 11:00AM US/Eastern | 4:00 PM United Kingdom | 5:00PM Central Europe | 8:00 PM Gulf Standard
Co-Chair: Daniel Ballesteros - University of Valencia, Spain
Co-Chair: Raquel Folgado - Huntington Library, Art Museum, and Botanical Gardens, USA

Shen Ren -
Instructor, Seattle University, Seattle, WA, USA; Affiliate Assistant Teaching Professor, Associate Director, Center for Cryo-biomedical Engineering and Artificial Organs, University of Washington, Seattle, WA, USA

Rapid and uniform heating generated by single-mode electromagnetic resonance (SMER) rewarming has been proved to be promising for the rewarming of cryopreserved large samples. The aim of this seminar is to discuss the key challenges of the electromagnetic heating and optimization of the SMER technology.

Dr. Shen Ren is an Instructor in the Mechanical Engineering Department at Seattle University, an Associate Director at the Center for Cryo-Biomedical Engineering and Artificial Organs, and an Affiliate Instructor in the Department of Mechanical Engineering at the University of Washington, Seattle. Dr. Ren received his Ph.D. in Mechanical Engineering from the University of Washington, Seattle, with the exceptional Ph.D. dissertation award. His doctoral dissertation focused on the development of an Automated Single-mode Electromagnetic Resonance Rewarming System for the Cryopreservation of Large-scale Biomaterials. He has been named the winner of the 2021 Peter L. Steponkus Crystal Award from the Society for Cryobiology (SFC). In 2022, Dr. Ren received the Innovation Award from the UW CoMotion.

Dariusz Kulus - Assistant Professor, Head of the Laboratory of Ornamental Plants and Vegetable Crops at the Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology, Poland

Application of nanoparticles may greatly improve the effectiveness of cryopreservation protocols and ought to be carefully explored. The aim of this seminar is to present some recent findings of the effect of various nanoparticles on the in vitro and ex vitro development of plants, particularly concerning cryobiology studies.

Dr. Kulus was born in 1987 in Toruń, Poland,  and is currently living and working in Bydgoszcz. He is a
 graduate of biotechnology at the UTP University of Technology and Life Sciences in Bydgoszcz (2011), and received his doctoral degree in biotechnology (summa cum laude) in 2016 from the University of Life Sciences in Poznań, Poland. He is a fan of travelling, cats, and music.

Dr. Kulus is the winner of numerous awards for scientific achievements, including the Scholarship of the Polish Minister of Science and Higher Education and the Mayor of the Bydgoszcz Metropolis Award for Outstanding Scientific Achievements. Author of grants for young researchers. Current professional interests focus on issues related to cryopreservation and analyses of biochemical and genetic variability in selected ornamental, vegetable, and medicinal plant species, as well as micropropagation of endangered species of cacti and other succulents. Theoretical knowledge has been supported by the experience gained during trainings and internships in domestic and foreign laboratories of diverse profiles, including the PAS Laboratory of Cryobiology in Warsaw, the Czech University of Life Sciences in Prague, Agricultural University of Athens, Zagreb, Tbilisi, and others. Author and co-author of scientific and popular science articles in the field of plant biotechnology.


May 18, 2022

Boris RubinskyProfessor of the Graduate School - University of California Berkeley, Department of Mechanical Engineering and Department of Bioengineering, USA

8:00AM US/Pacific | 11:00AM US/Eastern | 4:00 PM United Kingdom | 5:00PM Central Europe | 8:00 PM Gulf Standard
Co-Chairs: Ido Braslavsky - Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Israel 
Dr. Akalabya Bissoyi, Research Fellow, Matthew I. Gibson Group, Warwick Medical School, Warwick University, United Kingdom

Most of the research in cryobiology was done under conditions of constant atmospheric pressure (isobaric) because this is the normal mode at which life processes take place on earth. We began to explore processes relevant to cryobiology under conditions of constant volume (isochoric).  Our theoretical and experimental research has shown that isochoric condition modify cryobiology relevant processes. We studied the effects of isochoric constrains on the phenomena of: supercooling, freezing and vitrification. This presentation is a brief review of the theoretical and experimental findings.

Boris Rubinsky was born in Romania and immigrated to Israel as a teenager. He graduated with a B.Sc. and M.Sc. in Mechanical Engineering from the Technion in Israel and with a PhD in Mechanical Engineering/Bioengineering from M.I.T., in 1981. He has been a Professor at the University of California at Berkeley since 1980. At UC Berkeley he held the positions of the Chancellor‟s Professor from 1997 to 2000, the Arnold and Barbara Silverman Distinguished Professor of Bioengineering from 2000 to 2008 and is, since 2008, a Professor of the Graduate School. In addition he is the Director of the “Center for Bioengineering in the Service of Humanity and Society” which he founded at the Hebrew University of Jerusalem in 2006. The goal of the center is to promote research collaboration between Palestinian and Israeli students on projects relevant to the needs of the economically disadvantaged. Prof Rubinsky has published close to three hundred peer reviewed scientific papers, and has supervised the research of close to one hundred M.Sc. and Ph.D. students. In the supervision of students he was heavily focused on supervising disadvantaged students and is particularly proud of mentoring and supervising the research of the first African American woman to receive a PhD in Engineering at Berkeley. His research has received numerous society awards, best paper awards and recognitions such as the 1987 Fogarty Senior International Fellowship Award, National Institute of Health, the 1996 „Heat Transfer Memorial Award” from the American Society for Mechanical Engineering (ASME), the 2007 „Gold Award” from the International Society of Cryosurgery and many others. He is a Fellow of many societies including the American Association for Advancement of Science (AAAS) and the American Institute of Medical and Biomedical Engineering (AIMBE).

Laura Encabo Luque, Graduate Student - Engineering School, University of Seville (Energy, Chemical and Environmental Engineering), Spain

8:00AM US/Pacific | 11:00AM US/Eastern | 4:00 PM United Kingdom | 5:00PM Central Europe | 8:00 PM Gulf Standard
Co-Chairs: Ido Braslavsky - Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Israel 
Dr. Akalabya Bissoyi, Research Fellow, Matthew I. Gibson Group, Warwick Medical School, Warwick University, United Kingdom 

When a biological sample is cryopreserved, the problem of recrystallization can arises during rewarming. However, if it carries out fast and homogeneous heating this problem is avoided. From CryoBioTech we can offer the solution: by using HIFU as a rewarming technique, the recrystallization is solved. In this work, the survival rate obtained in Caenorhabditis elegans model is presented a proof of this scalable technique.

Laura Encabo was born in 1996 in Lucena, Córdoba (Spain), and is currently living in Seville. She is graduated in Pharmacy from University of Granada (2019) where she developed her knowledge in biotechnology, biochemistry and pharmacology. Laura developed her final degree dissertation at the prestigious CSIC-IACT (Andalusian Institute of Earth Sciences in collaboration with the Superior Council of Scientific Investigations) facilities in Granada, where she worked on improving the physicochemical properties of anti-inflammatory drugs through the use of the cocrystallization technique. Laura Encabo obtained a Research Contract from the Regional Government of Andalusia that allowed her to connect with the world of cryobiology. The results she achieved in the first months of work prompted her to develop her PhD at CryoBioTech with Dr. Risco, a multidisciplinary biologist-engineer group at Engineering School at University of Seville. Since she began her research stage, she has collaborated at different levels: proof of principles with the C. elegans animal model and its rewarming with HIFU (High Intensity Focused Ultrasound), evaluation of short-term memory after cryopreservation, and improvement of cryoprotectant cocktails. Currently, his research is focused on cryopreservation of the heart of mice and rats, applying HIFU as the main rewarming technique.

January 13, 2022

8:00AM US/Pacific | 11:00AM US/Eastern | 4:00 PM United Kingdom | 5:00PM Central Europe | 8:00 PM Gulf Standard
Harriette Oldenhof - University of Veterinary Medicine Hannover, Germany
James Benson - University of Saskatchewan, Canada 



Nucharin Songsasen - Head, Center for Species Survival, Smithsonian’s National Zoo & Conservation Biology Institute, Washington DC, USA

This presentation will discuss the state-of-the-art, applications, and challenges of gamete and reproductive tissue cryopreservation in endangered species conservation.

Nucharin Songsasen is the Center Head of the Center for Species Survival. She joined the Smithsonian in 2002 when offered the opportunity to study the reproductive biology of domestic and wild carnivores. Over the years, she built the Global Canid Conservation Program and expanded this conservation and research initiative from a laboratory setting to field conservation in range countries, including Brazil and Thailand.

Nucharin is a leading expert in the field of canid reproductive biology. Research conducted in her laboratory focuses on developing innovative technologies to rescuing valuable genetics from wild canids and felids, while improving human reproductive health. In addition to reproductive research, she has collaborated with SCBI scientists and developed partnerships with national and international governmental and non-governmental organizations to address many threats to the sustainability of wild canids, including the maned wolf, dhole, red wolf and African painted dog, living in zoos or the wild. Since 2009, she has led the collaboration with USGS’s Patuxent Wildlife Research Center in studying the reproductive biology and endocrinology of the whooping crane and identifying the causes of poor reproduction in this endangered species.

Nucharin has adjunct appointments at the University of Maryland, Cornell University and George Mason University. She is also a member of the IUCN’s Canid Specialist Group (CSG), the coordinator of CSG’s Dhole Working Group and the Maned wolf Species Survival Plan (MWSSP) as well as Reproductive Advisor to the Canid Taxon Advisory Group.

Nucharin received her Doctor of Veterinary Medicine degree from the Kasetsart University in Thailand, and Master of Science and doctoral degrees from the University of Guelph in Canada.


Iqra Azam - Graduate Student, Department of Biology, University of Saskatchewan, Canada

There has been recent success in high-subzero storage of livers, however longer storage durations achieved in liquid nitrogen require high concentrations of toxic and mechanically disrupting cryoprotectants. While there has been some work on cryobiologically relevant hepatocyte biophysics, here I show how the unique cell anatomy of hepatocytes affects basic assumptions of modelling in cryobiology. Moreover, I show how these structures are affected in-situ using 4D microscopy techniques. Finally, I present preliminary data on preventing osmotic damage during CPA equilibration.

Iqra Azam is a Ph.D. student working in James Benson's lab in the Department of Biology at the University of Saskatchewan. During her Masters, she evaluated insects as bioindicators of heavy metal contamination and assessed the spatial and temporal distribution of metals using Geographical Information System (GIS) techniques. Her current research focuses on biophysical characterization and mathematical optimization of cryopreservation of liver cells and tissues. Towards this, she has developed real-time volumetric quantification of adherent cells by using modern 3D & 4D microscopic imaging techniques. She is also developing an imaging protocol to track cells and nuclei within a live precision-cut tissue slice and for quantification of tissue expansion and shrinkage. She enjoys working with microscopes and learning new tools to do cell and tissue imaging.


This webinar took place 02/18/21